
PROGRAMMING I 1

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

Passing Data to Functions

We’ve learned so far that putting parenthesis behind a name lets the
compiler know that it is in reference to a function.

The parenthesis can also serve the purpose of passing data to a function and
in some cases return data from the function.

Consider built in library functions that we have used in the past such as
those found when using:

 #include <cmath>

When that compiler directive is used we have access to lots of mathematical
functions that we pass information in order for them to complete their task.

For example, if we want to raise a term to a power we would call the
function:

 pow(number,2);

to take the value stored in number and raise it to the second power.

The items number and 2 are said to be arguments and they are passed to
the receiving function.

There are two ways to pass data to functions: passing by value and passing
by reference.

Passing by Value

When you pass a variable to a function by value, a copy of the value in the
variable is given to the function for it to use.

If the variable is changed within the function, the original copy of the
variable in the calling function remains the same.

PROGRAMMING I 2

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

Passing by Reference

Functions that pass variables by reference will pass any changes you make to
the variables back to the calling function.

For example:

void get_values(float &income, float &expense)
{
 cout << “Enter this month’s income amount: $”;
 cin >> income;
 cout << “Enter this month’s expense amount: $”;
 cin >> expense;
}

the code above will get two values from the user and pass them back through
the parenthesis to the calling function and variables.

To pass a variable by reference, simply precede the variable name with an
ampersand (&) in the function definition.

This technique should be used as sparingly as possible because it is not as
safe as passing by value.

When you pass by value, you know the variable can’t be changed by the
function.

When you pass by reference, a programming error in the function could
cause a problem throughout the program.

Returning Values Using return

When you do need to pass values back to the calling function a better way of
doing this is to make use of the return command.

We know that all functions that aren’t void type should return a value. Just
like the main function always returns 0 to the operating system.

When other functions return a value it is returned to the calling function.

PROGRAMMING I 3

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

In the example below the variable stored in mm is returned to the calling
function.

double inches_to_millimeters(double inches)
{
 double mm; //local variable for calculation
 mm = inches / 0.03937;

return (mm);
}

The code below shows how you could use this function.

The statement millimeters = inches_to_millimeters(inches); calls
the inches_to_millimeters function and passes the value in the variable
inches to the function.

The function returns the length in millimeters, and the calling statement
assigns the millimeters length to the variable millimeters.

// inches_to_millimeters.cpp

#include <iostream>

using namespace std;

double inches_to_millimeters(double inches);

int main()
{
 double millimeters;
 double inches = 17.5;

 millimeters = inches_to_millimeters(inches);

cout << inches << “inches = “ << millimeters << “
millimeters” << endl;

return 0;
}

PROGRAMMING I 4

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

When using the return statement, keep the following points in mind:

• A function can return only one value using return. Use passing by
reference to return multiple values from a function. (Or split your
function into multiple parts.)

• When a return statement is encountered, the function will exit and

return the value specified, even if other program lines exist below the
return.

• A function can have more than one return statement to help simplify

an algorithm. For example, a return statement could be in an if
structure allowing a function to return early if a certain condition is
met.

More About Function Prototypes

A function prototype consists of the function’s return type, name, and
argument list.

So far, the function prototypes specified the parameter names in the
argument list.

However, this is not necessary as long as the type is specified.

For example in inches_to_millimeters the function could be written as:

double inches_to_millimeters(double);

In get_values the function could be written as:

 void get_values(float &, float &);

